3.1.40 \(\int \frac {\coth (x)}{(a+b \coth ^2(x))^{3/2}} \, dx\) [40]

Optimal. Leaf size=49 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {1}{(a+b) \sqrt {a+b \coth ^2(x)}} \]

[Out]

arctanh((a+b*coth(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)-1/(a+b)/(a+b*coth(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3751, 455, 53, 65, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {1}{(a+b) \sqrt {a+b \coth ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]/(a + b*Coth[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) - 1/((a + b)*Sqrt[a + b*Coth[x]^2])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\coth (x)}{\left (a+b \coth ^2(x)\right )^{3/2}} \, dx &=\text {Subst}\left (\int \frac {x}{\left (1-x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\coth (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{(1-x) (a+b x)^{3/2}} \, dx,x,\coth ^2(x)\right )\\ &=-\frac {1}{(a+b) \sqrt {a+b \coth ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\coth ^2(x)\right )}{2 (a+b)}\\ &=-\frac {1}{(a+b) \sqrt {a+b \coth ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \coth ^2(x)}\right )}{b (a+b)}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}-\frac {1}{(a+b) \sqrt {a+b \coth ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.03, size = 41, normalized size = 0.84 \begin {gather*} -\frac {\, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {a+b \coth ^2(x)}{a+b}\right )}{(a+b) \sqrt {a+b \coth ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]/(a + b*Coth[x]^2)^(3/2),x]

[Out]

-(Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Coth[x]^2)/(a + b)]/((a + b)*Sqrt[a + b*Coth[x]^2]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(272\) vs. \(2(41)=82\).
time = 0.63, size = 273, normalized size = 5.57

method result size
derivativedivides \(-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\coth \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\coth \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(273\)
default \(-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\coth \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\coth \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(273\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a+b*coth(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(a+b)/(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)+b/(a+b)*(2*b*(coth(x)-1)+2*b)/(4*b*(a+b)-4*b^2)/(b*(cot
h(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b+2*b*(coth(x)-1)+2*(a+b)^(1/2)*(b*(coth(x)-1)^
2+2*b*(coth(x)-1)+a+b)^(1/2))/(coth(x)-1))-1/2/(a+b)/(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)-b/(a+b)*(2*b*
(1+coth(x))-2*b)/(4*b*(a+b)-4*b^2)/(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b
*(1+coth(x))+2*(a+b)^(1/2)*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2))/(1+coth(x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(coth(x)/(b*coth(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 869 vs. \(2 (41) = 82\).
time = 0.48, size = 2299, normalized size = 46.92 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b
)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 - (a - b)*cosh(x))*sinh(x) + a + b)*sqrt(a + b)*log(-((a
^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 - 2*(2*a^3 + a^2*b)*cosh(x
)^6 - 2*(2*a^3 + a^2*b - 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 - 3*(2*a^3 + a^
2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*
a^2*b - a*b^2 + b^3 - 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 - 10*(2*a^3 + a^
2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 - 2*(2*a^3
 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 - 15*(2*a^3 + a^2*b)*cosh(x)^4 - 2*a^3 - 3*a^2*b +
 b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)
^5 + a^2*sinh(x)^6 - 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 - a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 - 3*a^2*cosh(x
))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 - 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*s
inh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*a^2*cosh(x)^5 - 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*
sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(2*(a^3 + a^2*b)*cosh(x)^7 - 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 - (2*
a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^
3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + ((a + b)*cosh(x)^4 + 4*(a + b)*cosh
(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((a +
b)*cosh(x)^3 - (a - b)*cosh(x))*sinh(x) + a + b)*sqrt(a + b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x
)^3 + (a + b)*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(
x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*co
sh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x
) + sinh(x)^2)) - 4*sqrt(2)*((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 - a - b)*sqrt((
(a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3 + 3*a^2*b +
 3*a*b^2 + b^3)*cosh(x)^4 + 4*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(x)*sinh(x)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b
^3)*sinh(x)^4 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 - 2*(a^3 + a^2*b - a*b^2 - b^3)*cosh(x)^2 - 2*(a^3 + a^2*b - a*b
^2 - b^3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + 4*((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(x)
^3 - (a^3 + a^2*b - a*b^2 - b^3)*cosh(x))*sinh(x)), -1/2*(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (
a + b)*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 - (a
 - b)*cosh(x))*sinh(x) + a + b)*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 -
 a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sin
h(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 - (2*a^2 + a*b - b^2
)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 - 2*a^2 - a*b + b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*c
osh(x)^3 - (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + ((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)
*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 - (a - b)*
cosh(x))*sinh(x) + a + b)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a
- b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b
)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 -
 a + b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 - (a - b)*cosh(x))*sinh(x) + a + b)) + 2*sqrt(2)*((a + b)*cosh(x)^2 +
 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 - a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(
cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(x)^4 + 4*(a^3 + 3*a^2*b + 3
*a*b^2 + b^3)*cosh(x)*sinh(x)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sinh(x)^4 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 -
2*(a^3 + a^2*b - a*b^2 - b^3)*cosh(x)^2 - 2*(a^3 + a^2*b - a*b^2 - b^3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cos
h(x)^2)*sinh(x)^2 + 4*((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(x)^3 - (a^3 + a^2*b - a*b^2 - b^3)*cosh(x))*sinh(x
))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth {\left (x \right )}}{\left (a + b \coth ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)**2)**(3/2),x)

[Out]

Integral(coth(x)/(a + b*coth(x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(ex

________________________________________________________________________________________

Mupad [B]
time = 1.94, size = 41, normalized size = 0.84 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{{\left (a+b\right )}^{3/2}}-\frac {1}{\left (a+b\right )\,\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a + b*coth(x)^2)^(3/2),x)

[Out]

atanh((a + b*coth(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(3/2) - 1/((a + b)*(a + b*coth(x)^2)^(1/2))

________________________________________________________________________________________